EphB4 Forward‐Signaling Regulates Cardiac Progenitor Development in Mouse ES Cells

نویسندگان

  • Kang Chen
  • Hao Bai
  • Yanfeng Liu
  • Dixie L. Hoyle
  • Wei‐Feng Shen
  • Li‐Qun Wu
  • Zack Z. Wang
چکیده

Eph receptor (Eph)-ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4-ephrinB2 regulates cardiovascular development. To assess the role of EphB4-ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5(+) cardiac progenitor cells and in α-MHC(+) cardiomyocytes, respectively. We found that both EphB4 and ephrinB2 were expressed in Nkx2.5-GFP(+) cardiac progenitor cells, but not in α-MHC-GFP(+) cardiomyocytes during cardiac lineage differentiation of ES cells. An antagonist of EphB4, TNYL-RAW peptides, that block the binding of EphB4 and ephrinB2, impaired cardiac lineage development in ES cells. Inhibition of EphB4-ephrinB2 signaling at different time points during ES cell differentiation demonstrated that the interaction of EphB4 and ephrinB2 was required for the early stage of cardiac lineage development. Forced expression of human full-length EphB4 or intracellular domain-truncated EphB4 in EphB4-null ES cells was established to investigate the role of EphB4-forward signaling in ES cells. Interestingly, while full-length EphB4 was able to restore the cardiac lineage development in EphB4-null ES cells, the truncated EphB4 that lacks the intracellular domain of tyrosine kinase and PDZ motif failed to rescue the defect of cardiomyocyte development, suggesting that EphB4 intracellular domain is essential for the development of cardiomyocytes. Our study provides evidence that receptor-kinase-dependent EphB4-forward signaling plays a crucial role in the development of cardiac progenitor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels.

Differentiation of pluripotent embryonic stem (ES) cells is associated with expression of fate-specifying gene products. Coordinated development, however, must involve modifying factors that enable differentiation and growth to adjust in response to local microenvironmental determinants. We report here that the ephrin receptor, EphB4, known to be spatially restricted in expression and critical ...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

EphB4 forward signalling regulates lymphatic valve development

Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that ...

متن کامل

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2015